Exercise 1.76

In the United States, water used for irrigation is measured in acre-feet. An acre-foot of water covers an acre to a depth of exactly 1 ft. An acre is 4840 yd². An acre-foot is enough water to supply two typical households for 1.00 yr. (a) If desalinated water costs \$1950 per acre-foot, how much does desalinated water cost per liter? (b) How much would it cost one household per day if it were the only source of water?

Solution

Part (a)

Use dimensional analysis to convert from dollars per acre-foot to dollars per liter.

$$1950 \frac{\$}{1 \text{ acre}} \times \frac{1 \text{ acre}}{4840 \text{ yd}^2} \times \left(\frac{1 \text{ yd}}{3 \text{ K}}\right)^2 \times \left(\frac{1 \text{ yd}}{12 \text{ jd}}\right)^3 \times \left(\frac{1 \text{ jd}}{2.54 \text{ cm}}\right)^3 \times \frac{1 \text{ cm}^3}{1 \text{ jmK}} \times \frac{1000 \text{ jmK}}{1 \text{ L}} \approx 1.58 \times 10^{-3} \frac{\$}{\text{L}}$$

Part (b)

Use dimensional analysis again.

$$1950 \frac{\$}{1 \text{ acre} \cdot \texttt{ft}} \times \frac{1 \text{ acre} \cdot \texttt{ft}}{2 \text{ households} \cdot \texttt{year}} \times \frac{1 \text{ year}}{365 \text{ days}} \approx 2.67 \frac{\$}{\text{ household} \cdot \text{ day}}$$

Therefore, it will cost one household

$$1 \text{ household} \times 2.67 \frac{\$}{\text{household} \cdot \text{day}} \approx 2.67 \frac{\$}{\text{day}}.$$